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Abstract

We construct the moduli spaces associated to the solutions of equations of motion (modulo gauge transformations) of the
Poisson sigma model with target being an integrable Poisson manifold. The construction can be easily extended to a case of a
generic integrable Lie algebroid. Indeed for any Lie algebroid one can associate a BF-like topological field theory which localizes
on the space of algebroid morphisms, that can be seen as a generalization of flat connections to the groupoid case. We discuss
the finite gauge transformations and discuss the corresponding moduli spaces. We consider the theories both without and with
boundaries.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Topological field theory (TFT) plays a prominent role in the investigation of geometry and topology of the moduli
spaces of flat connections over a two-dimensional surface Σ . In particular these moduli spaces appear as the phase
space of Chern-Simons theory, the localization locus of two-dimensional Yang-Mills and as the stationary points of
BF theory. The application of quantum field theoretical methods has produced new results such as the formulas for
the symplectic volume and for the intersection numbers (e.g., see [2]).

The Poisson sigma model (PSM) is another example of two-dimensional TFT introduced in [18,21] which is a
sigma model defined on a two-dimensional surface Σ with target being a Poisson manifold. The BF-theory and A-
model are particular examples of PSM. Recently PSM has attracted additional attention due to its relation with the
deformation quantization [11]. However the potential use of the PSM as a nonperturbative TFT still remains to be
investigated.

In this paper we show how a generalization of the moduli space of flat connections over Σ naturally appears when
we study the stationary configurations of PSM. We complete the study of the moduli space of stationary points of
PSM modulo the gauge transformations initiated in [5] for the special case of Poisson–Lie groups. In this situation the
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equations of motion of the model have a straightforward geometrical interpretation as the equations of a flat connection
on the trivial bundle for the dual group and a parallel section for the fibre bundle associated to the dressing action. This
observation dictates an obvious choice for the on-shell finite gauge transformations and the corresponding definition
of the moduli space of solutions. Moreover the resulting space has a natural description where for every symplectic
leaf of the target we associate the moduli space of flat connections for the isotropy group of the leaf.

In the present work we address the general case. Surprisingly it turns out that once we properly identify the gauge
transformations the moduli space admits the same description. Furthermore the geometrical interpretation of the
equations of PSM as algebroid morphisms between TΣ and T ∗M suggests that the discussion remains valid if
we substitute T ∗M by a generic (integrable) Lie algebroid E . This extension leads us beyond the PSM and puts the
results in a different perspective.

An algebroid over a point is a Lie algebra and the moduli space of algebroid morphisms coincides with the moduli
space of flat connections for the trivial bundle. Thus in the general case we can look at the equations of motion as a
generalized flat connection equation where the structure constants depend on the base manifold. By applying the Lie
theorems for integrable algebroids, we can equivalently deal with groupoid morphisms from the fundamental groupoid
Π (Σ ) to the groupoid G(E) integrating E . This must be seen as the generalization of the holonomy description of the
moduli space of flat G-connections as the space of G-representations of the fundamental group. Our result describes
this generalized moduli space as the union over the leaves of the representations of the fundamental group in the
isotropy group.

The structure of the paper is as follows. In Section 2 we review some basic notions from algebroid and groupoid
theory. In Section 3 we discuss the equations of motion and the corresponding TFTs. Also we consider the natural
boundary conditions in this setup. Section 4 is devoted to the finite gauge transformations which form a groupoid.
We explain their relation to the algebroid (groupoid) homotopy. In Section 5 we discuss the moduli spaces and their
equivalence to the various generalizations of flat connections. Section 6 contains the summary and the list of open
problems.

2. Lie algebroids and Lie groupoids

In this section we recall some basic notions from the theory of Lie algebroids and Lie groupoids. For a more
extensive discussion we refer to [9] and [20].

2.1. Lie algebroids

Definition 2.1. A Lie algebroid (E,M, ρ, { , }) is a vector bundle E over a manifoldM together with a bundle map
(the anchor) ρ : E → TM and a Lie bracket { , } on the space Γ (E) of sections of E satisfying the compatibility
condition

{v, f u} = f {v, u} + Lρ∗v f u, u, v ∈ Γ (E), f ∈ C∞(M) (2.1)

where ρ∗ : Γ (E) → Γ (TM) is the induced map of sections and L is the Lie derivative.

It follows from the definition that ρ∗ is a morphism of Lie algebras. On a trivializing chart U we can choose the
local coordinates Xµ (µ = 1, . . . , dimM) and a basis eA, (A = 1, . . . , rankE) on the fiber (e.g., the basis of constant
sections on E |U ). In these local coordinates we introduce the anchor ρµA and the structure functions

ρ(eA)(X) = ρµA(X)∂µ, {eA, eB
} = f AB

C eC . (2.2)

The compatibility condition (2.1) implies the following equations

ρνA∂νρ
µB

− ρνB∂νρ
µA

= f AB
Cρ

µC (2.3)

ρµ[D∂µ f AB]
C + f [AB

L f D]L
C = 0, (2.4)

where [ ] stands for the antisymmetrization.
To any Lie algebroid we associate a characteristic foliation, that is the singular foliation on M determined by the

distribution x → Im(ρ|Ex ). The isotropy algebra for x ∈ M is defined as the kernel of the anchor map ρ

gx = ker(ρ|Ex ). (2.5)
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For any x, y in the same leaf ∈ L we have gx ' gy . Hence we get a bundle of Lie algebras over L

gL =

⋃
x∈L

gx → L . (2.6)

Here are some examples of Lie algebroids which will be relevant for further discussion.

Example 2.2. Every Lie algebra g is an algebroid over a point (ρ = 0).

Example 2.3. The tangent bundle TM of a smooth manifold M is an algebroid with the bracket between vector
fields and ρ = id.

Example 2.4. Let γ : g → Vect(M) be a right action of a Lie algebra g on a manifold M. The action Lie algebroid
is defined on M × g over M with anchor ρ(m, ξ) = γ (ξ)(m) ∈ TmM and bracket between v,w ∈ Γ (M × g) =

C∞(M, g)

{v,w}(m) = [v(m), w(m)] + Lγ (v(m))(w)(m)− Lγ (w(m))(v)(m),

where [ , ] denotes the bracket in g and L the Lie derivative.

Example 2.5. LetM be a Poisson manifold with Poisson tensor α ∈ Γ (∧2 TM). The associated canonical algebroid
is defined on T ∗M by choosing as anchor the contraction ]α of cotangent vectors with α and by defining the bracket
on exact forms as {d f, dg} = d{ f, g}, f, g ∈ C∞(M) and extending it to all Γ (T ∗M) with (2.1).

Next following Higgins and Mackenzie [16] we give a definition of Lie algebroid morphism which plays a central
role in our investigation:

Definition 2.6. Let (E1,M1, ρ1, { , }1) and (E2,M2, ρ2, { , }2) be Lie algebroids. Then a morphism of Lie
algebroids is a vector bundle morphism

E1
Φ

−−−−→ E2

π1

y π2

y
M1

φ
−−−−→ M2

(2.7)

such that

ρ2 ◦ Φ = dφ ◦ ρ1, (2.8)

where dφ : TM1 → TM2 and such that for arbitrary V,W ∈ Γ (E1) with Φ-decomposition

Φ ◦ V =

∑
V i (ei ◦ φ), Φ ◦ W =

∑
W i (ẽi ◦ φ) (2.9)

where W i , V i
∈ C∞(M1) and ei , ẽi ∈ Γ (E2), we have

Φ ◦ {V,W }1 =

∑
V i W j ({ei , ẽ j }2 ◦ φ)+

∑
Lρ∗1V W i (ẽi ◦ φ)−

∑
Lρ∗1W V i (ei ◦ φ). (2.10)

It is clear that relations (2.9) and (2.10) are in φ∗E2. It may appear that there are ambiguities in this definition.
However it can be shown that the right-hand side of (2.10) is independent of the Φ-decompositions of V and W , for
further details see [16].

Definition 2.7. Let (E,M, ρ, { , }) be a Lie algebroid. Then a Lie subalgebroid of E is a morphism of Lie algebroids
Φ : E ′

→ E , φ : D → M such that Φ and φ are injective immersions.

In local coordinates we can describe a Lie subalgebroid as follows. In the neighborhood of a point x ∈ D (we
identify D with a submanifold of M) we choose coordinates Xµ = (X µ̂, X µ̃) adapted to the submanifold D such
that in this neighborhood the submanifold is given by the condition X µ̂ = 0. We use the Greek lower case letters
with a hat for the coordinates transverse to the submanifold D and the same letters with tilde for the coordinates
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along the submanifold D. We can as well introduce the basis on the fiber adapted to the fact that E ′
x ⊂ Ex , namely

eA
= (ea, en). We use the Latin lower case letters from the beginning of alphabet for the basis of E ′

x and from the
middle for the remaining elements in the basis. Then one can show that the above definition implies the following
properties for the anchor map and for “structure constants” along D

ρµ̂a(0, X µ̃) = 0, f ab
n(0, X µ̃) = 0. (2.11)

Thus ρµ̃a(0, X µ̃) and f ab
c(0, X µ̃) define the structure of a Lie algebroid over E ′

→ D.

2.2. Lie groupoids

A groupoid is a small category G with all arrows invertible. If the set of objects (points) is M, we say that G is a
groupoid overM. We shall denote by the same letter G the space of arrows, and write

G
s

yyt

M

where s and t are the source and target maps. If g, h ∈ G the product gh is defined only for pairs (g, h) in the set of
composable arrows

G(2) = {(g, h) ∈ G × G|t (h) = s(g)},

and we denote by g−1
∈ G the inverse of g, and by id(x) ≡ x the identity arrow at x ∈ M. The objects M are

thus embedded in G with id; when no confusion arises we will omit id and simply consider M ⊂ G. If G and M
are topological spaces, all the maps are continuous, and s and t are open surjections, we say that G is a topological
groupoid. A Lie groupoid is a groupoid where the space of arrows G and the space of objectsM are smooth manifolds,
the source and target maps s, t are submersions, and all the other structure maps are smooth. We require M and the
s-fibers Gx = s−1(x), where x ∈ M, to be Hausdorff manifolds, but it is important to allow the total space G of
arrows to be non-Hausdorff.

The action of G on a space X equipped with an anchor µ : X → M consists in a map from G ∗ X = {(g, x) ∈

G × X | s(g) = µ(x)} to X , (g, x) → gx such that: (i) µ(gx) = t (g), (ii) g(hx) = (gh)x , (iii) µ(x)x = x .
Given a Lie groupoid G we can define the Lie algebroid A(G) as follows. It is defined on A(G)x = TxGx , for

x ∈ M; the anchor is ρ = dt : TxGx → TxM. The bracket comes from the identification of Γ (A(G)) with left
invariant vector fields on G by choosing the bracket of vector fields on G. Since not every Lie algebroid comes out in
this way, we say that an algebroid E is integrable if there exists a Lie groupoid G such that A(G) = E . The problem
of integration of Lie algebroid is a generalization of the problem of integration of Lie algebras.

A groupoid morphism from a groupoid G1 to G2 is a covariant functor; more explicitly, we get the following
definition:

Definition 2.8. Let Gi , i = 1, 2, be Lie groupoids and let Mi , idi , si , ti be the corresponding space of units,
their embedding, the source and target maps. A groupoid morphism from G1 to G2 is a couple of maps (X, X̂),
X : M1 → M2 and X̂ : G1 → G2 such that

(i) X ◦ s1 = s2 ◦ X̂ , X ◦ t1 = t2 ◦ X̂ ;
(ii) X̂(ab) = X̂(a)X̂(b) for all a, b ∈ G(2)1 ;

(iii) X̂ ◦ id1 = id2 ◦ X .

Let Ei =
⋃

x∈Mi
Tidi (x)(Gi )x be the tangent Lie algebroids. It is a fundamental fact that (X, j), where j = X̂∗ :

(E1)x → (E2)X (x) is a Lie algebroid morphism.
We have the following Lie theorems for algebroids.

Theorem 2.9 (Lie I). Let E = A(G) and let E ′
⊂ E be a subalgebroid. Then there exists an immersed Lie

subgroupoid G′
⊂ G such that E ′

= A(G′).
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Theorem 2.10 (Lie II). Let G1 and G2 be two Lie groupoids with Lie algebroids E1 and E2; if G1 is source simply
connected (ssc) then for every Lie algebroid morphism (X, j) : E1 → E2 there exists a unique groupoid morphism
(X, X̂) : G1 → G2, such that j = X̂∗.

Moreover for a given integrable Lie algebroid E there exists a unique source simply connected Lie groupoid G(E)
integrating it. Next we give some basic examples of Lie groupoids.

Example 2.11. A finite dimensional Lie algebra g, considered as a Lie algebroid over a point as in Example 2.2, is
integrated by the simply connected group G seen as a groupoid over a point.

Example 2.12. The source simply connected groupoid integrating TM (see Example 2.3) is the fundamental
groupoid Π (M), the set of curves in M modulo homotopies with fixed end points; the groupoid structures are the
obvious ones, e.g. source (resp. target) is the initial (resp. final) point, multiplication is concatenation, and identities
are the trivial loops. For each m ∈ M, Π (M)m is diffeomorphic to the universal cover M̃ of M and Π (M)mm is
π1(M,m).

Example 2.13. If the action of g onM of Example 2.4 comes from an action of G, where g = LieG, then the action
Lie algebroid onM× g is integrated by the action Lie groupoidM× G.

Example 2.14. If the algebroid T ∗M associated to a Poisson manifold (see Example 2.5) is integrable, then the
groupoid is a symplectic manifold, called the symplectic groupoid. The particular case of a Poisson Lie group is
always integrable. In the factorizable case, the groupoid integrating it corresponds to the action groupoid G × G∗,
where G∗ is the dual Poisson–Lie group, acting on G with the dressing transformations, see [19].

We close this section by defining the admissible sections of a groupoid. For any Lie groupoid G the group of
admissible sections Bis(G) is the group of maps σ : M → G, such that sσ = id and tσ = ψσ : M → M
is a diffeomorphism. The group law is σ1σ2(x) = σ1(t (σ2(x)))σ2(x) and the identity is id. Since we have that
ψσ1σ2 = ψσ1ψσ2 , ψσ defines an action of Bis(G) onM that preserves the leaves. It comes out that Bis(G(E)) is a Lie
group whose Lie algebra is Γ (E). Indeed a tangent vector to σ ∈ Bis(G(E)) means to assign an element of Tσ(x)Gx
for each x ∈ M; in particular the tangent space to the identity σ = id is Γ (E).

3. Lie algebroid and TFT

To any Lie algebroid (E,M, ρ, { , }) we can associate a gauge theory in the following way. Consider the space of
bundle maps from the tangent bundle TΣ of a two-dimensional oriented manifold Σ , possibly with boundary, to the
vector bundle E with base manifoldM. We describe such bundle maps by a pair (X, j),

TΣ
j

−−−−→ Ey y
Σ

X
−−−−→ M

(3.12)

where X : Σ → M is the base map and j is the map between fibers, e.g. j is a section in Γ (T ∗Σ ⊗ X∗E) =

Ω1(Σ , X∗E). Now we consider on TΣ the tangent algebroid and we require that (X, j) is a Lie algebroid morphism.
In local coordinates {Xµ} onM and {uα} on Σ and by choosing a local trivialization eA for E , X is given by (dimM)
functions Xµ(u) and j by (rankE) differential 1-forms jA = jAαduα . For arbitrary vector fields on Σ , V,W ∈ Γ (TΣ )
we get the j-decomposition

j ◦ V = jAαV α(eA
◦ X), j ◦ W = jAαWα(eA

◦ X). (3.13)

Applying the Definition 2.6, we can write (2.10) in local coordinates

jAα[V,W ]
α(eA

◦ X) = jAαV α jBβWβ({eA, eB
} ◦ X)+ V α∂α( jAβWβ)(eA

◦ X)− Wα∂α( jAβV β)(eA
◦ X)

(3.14)
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where [ , ] is the standard Lie bracket on Γ (TΣ ) and { , } is the bracket on Γ (E). The Eq. (3.14) implies

V αWβ(∂β jAα − ∂α jAβ − f BC
A jBα jCβ)(e

A
◦ X) = 0 (3.15)

where we have used (2.2). To summarize, the equations of motion of the system are given by

d jA +
1
2

f BC
A(X) jB ∧ jC = 0, (3.16)

dXµ − ρµA(X) jA = 0, (3.17)

where the last equation is a simple consequence of (2.8).
Thus the fact that (X, j) is a Lie algebroid morphism implies the first order differential equations for Xµ and

jAαdξα . These equations form a consistent system of partial differential equations due to the properties (2.3) and
(2.4). On top of this the system is invariant under the infinitesimal gauge transformations

δ jA = −dβ A
− f BC

A(X) jBβC (3.18)

δXµ = −ρµA(X)βA (3.19)

where β is a gauge parameter. For the similar discussion of the system (3.16)–(3.19) see [3].
The motivating example for the system (3.16)–(3.19) is PSM where Σ is two-dimensional and E = T ∗M defined

in Example 2.5. In this case the Eq. (3.16), (3.17) are the stationary points of the action functional

S(X, η) =

∫
Σ

〈η, dX〉 +
1
2
〈η, (α ◦ X)η〉, (3.20)

where (X, η) is bundle morphism from TΣ to T ∗M. The pairing 〈, 〉 is defined as pairing of the values in TM
and T ∗M and the exterior product of differential forms. The action functional is invariant under the corresponding
transformations (3.18), (3.19).

Indeed the system (3.16)–(3.19) is defined for Σ being a manifolds of any dimension, dim Σ = p. The equations
of motion can be derived from the following trivial action

S(X, j, A, λ) =

∫
Σ
λA

∧

(
d jA +

1
2

f BC
A(X) jB ∧ jC

)
+ Aµ ∧ (dXµ − ρµA(X) jA), (3.21)

where λ ∈ Ω p−2(Σ , X∗E∗) and A ∈ Ω p−1(Σ , X∗T ∗M) are the Lagrangian multipliers, see [22] for an analogous
discussion. The action (3.21) is invariant under (3.18) and (3.19) together with the additional transformations

δλA
= ρµAbµ + f AB

Cλ
CβB (3.22)

δAµ = (−1)(p−1)dbµ − (∂µ f AB
C )λ

C
∧ jAβA − (∂µρ

νA)bν ∧ jA + (∂µρ
νA)AνβA, (3.23)

where b ∈ Ω p−2(Σ , X∗T ∗M) and β ∈ Ω0(X∗E) are the gauge parameters. In coordinate free way the fields
(X, j, A, λ) can be interpreted as follows. (X, j) is a bundle morphism TΣ → E , (X, A) is a bundle morphism
∧

p−1 TΣ → T ∗M and (X, λ) is a bundle morphism ∧
p−2 TΣ → E∗. Introducing the pairings as pairing in values

between E and E∗ and as paring between TM and T ∗M and the exterior product of differential forms on Σ we can
rewrite the action functional (3.21) in coordinate independent form. This theory is a rather obvious generalization of
BF-theory [17,1] to the case of a generic Lie algebroid.

If Σ is two-dimensional then the action (3.21) can be written in the following form

S =

∫
Σ

jA ∧ dλA
+ Aµ ∧ dXµ +

1
2
( f BC

A(X)λ
A) jB ∧ jC + ρµA(X) jA ∧ Aµ (3.24)

and it differs from (3.21) only by a boundary term. The action (3.24) has a clear interpretation, this is the Poisson
sigma model for E∗. In fact, if (E,M, ρ, { , }) is a Lie algebroid, the dual bundle E∗ has a natural Poisson structure,
defined by the tensor π ∈ ∧

2 T ∗E∗ given in coordinates Xµ, λA as

π(X, λ) = f AB
Cλ

C ∂

∂λA ∧
∂

∂λB + ρµA ∂

∂λA ∧
∂

∂Xµ
. (3.25)
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In the action (3.24) we have that (X, λ) : Σ → E∗ and (A, j) is a differential form on Σ taking values in the pull-back
by (X, λ) of T ∗E∗.

Every solution of (3.16) and (3.17) defines a solution of the equations of motion of (3.24), e.g. we have embedded
our system of equations in a TFT. Let us see it in an intrinsic way. The full set of equations, including those obtained
by varying X and j , obviously describes the algebroid morphisms from TΣ to T ∗E∗. In Lemma 4.2 of [10] it is shown
that E is a subalgebroid of T ∗E∗. The injection is defined as follows: the fibre T ∗

(m,α)E
∗ over (m, α) ∈ M × Em , is

T ∗
mM⊕ Em . The injection is defined as ι : Em → T ∗

(m,0)E
∗ as ι(m, a) = ((m, 0), 0 ⊕ a). It comes out that this is an

injective algebroid morphism. Thus composing with ι we can inject the set of vector bundle morphisms from TΣ to
E into the space of fields of the model and every algebroid morphism of E defines an algebroid morphism for T ∗E∗,
e.g. is a solution of the equations of motion of the PSM with target E∗. Of course this mapping is not surjective,
e.g. there are solutions with λ and A different from 0.

If ∂Σ 6= ∅ we have to choose appropriate boundary conditions on the fields. For example, we may ask that the
boundary terms vanish in the variations of (3.24). Thus in order to get the equations of motion, we have to choose
boundary conditions such that

( jτ Aδλ
A

+ AτµδXµ)|∂Σ = 0 (3.26)

where jA|T ∗∂Σ = jAτdτ and Aµ|T ∗∂Σ = Aµτdτ . The action (3.24) is invariant under the infinitesimal gauge
transformations (3.18), (3.19) and (3.22), (3.23) with parameter (bµdXµ, βAdλA) ∈ Γ ((X, λ)∗(T ∗E∗)), provided
the following boundary condition is satisfied

(βA∂τλ
A

+ bµ∂τ Xµ)|∂Σ = 0. (3.27)

Finally, also the boundary conditions should be invariant under the residual gauge transformations. By using the
results of [13] (see also [5]) one can establish that the boundary conditions for the theory are labeled by the co-
isotropic submanifolds of E∗. Recall that a submanifold X of a Poisson manifold E∗ is co-isotropic iff the co-normal
bundle N∗ X is a subalgebroid of T ∗E∗.

Motivated by this discussion it is natural to choose those boundary conditions that come from E . In fact for every
subalgebroid E ′

⊂ E over D ⊂ M, we can see that E ′⊥
⊂ E∗ is a co-isotropic submanifold. Let us choose the

adapted coordinates Xµ = (X µ̂, X µ̃) and trivialization eA = (ea, en) such that the D corresponds to X µ̂ = 0 and
E ′

X = 〈ea〉. It is then easy to verify that the local conditions (2.11) for E ′ is a subalgebroid correspond to those for
E ′⊥, a co-isotropic submanifold, πab

= 0 and πaµ̂
= 0. The contrary is not true as can be easily understood from the

following example.

Example 3.1. Let E = g be a Lie algebra and g∗ is vector space with the canonical Poisson structure. Then the
subalgebroids of g are the Lie subalgebras h ⊂ g that define the linear co-isotropic submanifolds h⊥

⊂ g∗. However
not any co-isotropic submanifold of g∗ arises in this way.

Thus in the forthcoming discussion when we refer to the open case we consider the system (3.16)–(3.19) with the
boundary conditions given by Lie subalgebroids of (E,M, ρ, { , })

T ∂Σ
j

−−−−→ E ′ Φ
−−−−→ Ey y y

∂Σ
X

−−−−→ D φ
−−−−→ M

(3.28)

On the boundary the gauge transformations are restricted correspondingly.
We close this section with a comment about PSM with target M when M is a Poisson manifold. The boundary

conditions for this PSM are not defined by any subalgebroid of T ∗M, but only by those which are co-normal bundles
of a submanifold [13]. In [8] a more general class of boundary conditions is considered. This is not surprising since
we have motivated our choice of boundary conditions starting from PSM with target (T ∗M)∗. It is not clear at the
moment the relevance of this wider class of boundary conditions in the context of the PSM with targetM.
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4. Integration of gauge transformations

In this section we define the finite gauge transformations that integrate the infinitesimal transformations (3.18)
and (3.19). In the case of an integrable Lie algebroid, we will analyze groupoid morphisms rather than algebroid
morphisms, since it is much easier to introduce the finite gauge transformations.

In fact, due to Theorem 2.10 every solution (X, j) of the Eqs. (3.16) and (3.17) can be lifted to a groupoid morphism
(X, X̂) between Π (Σ ) and G(E), the (ssc) groupoid integrating E , and vice-versa. In the following we will identify
the solutions of the Eqs. (3.16) and (3.17) with the groupoid morphisms from Π (Σ ) to G(E) that they generate. We
denote the space of all morphisms from Π (Σ ) to G(E) with Mor(Π (Σ ),G(E)).

4.1. The closed case

In this subsection we consider the case when ∂Σ = ∅. We assume that E is integrated by G(E) with s, t :

G(E) → M being the source and target map. Let id : M → G be the usual embedding of M in G(E) as the
space of identities. As usual we denote with G(E)x (G(E)x ) the fiber of the source (target) map in x ∈ M and with
G(E)y

x = G(E)x ∩ G(E)y . Recall that G(E)x and G(E)x are separable smooth manifolds and that TxG(E)x = Ex .
We will first define the gauge transformations on the morphisms from Π (Σ ) to G(E) and then we will compute

the induced transformations on the algebroid morphisms between TΣ and E .
Following [4] we introduce the infinite-dimensional groupoid GΣ

= {Φ̂ : Σ → G(E)} overMΣ
= {Φ : Σ → M}

with structure maps defined pointwise. Namely, we define source and target by s(Φ̂)(u) = s(Φ̂(u)), t (Φ̂)(u) =

t (Φ̂(u)) for u ∈ Σ and multiplication by Φ̂1Φ̂2(u) = Φ̂1(u)Φ̂2(u). A section S of the associated algebroid1 A(GΣ )

is defined by giving a section S(Φ) ∈ Γ (Φ∗E) for every Φ ∈ MΣ . There is a natural groupoid action of GΣ on
Mor(Π (Σ ),G(E)) which is given by

XΦ̂(u) = t (Φ̂)(u) X̂Φ̂([cuv]) = Φ̂(u)X̂([cuv])Φ̂(v)−1, (4.29)

where (X, X̂), (XΦ̂, X̂Φ̂) ∈ Mor(Π (Σ ),G(E)), Φ̂ ∈ GΣ with s(Φ̂) = X and [cuv] is the homotopy class of a curve
cuv in Σ . Thus we declare GΣ as our choice of finite gauge transformations.

However there are alternative choices of finite gauge transformations, e.g. the group Bis(GΣ ) of admissible sections
of GΣ . In this case the formula (4.29) also defines a group action of Bis(GΣ ) on Mor(Π (Σ ),G(E)). The orbits of GΣ

contain the orbits of Bis(GΣ ) and thus the choice of GΣ is a more generic one. Another possible choice of the gauge
transformations is (BisG(E))Σ , which is the group of maps from Σ to BisG(E), seen as a subgroup of Bis(GΣ ), see
section 3.1 in [4]. However it is very hard to work with these groups and in the following we will consider only the
groupoid action of GΣ on Mor(Π (Σ ),G(E)).

Indeed the choice of GΣ as finite gauge transformations looks natural from the categorical point of view. Namely, if
we look to the above groupoids as categories then any groupoid morphism in Mor(Π (Σ ),G(E)) is a covariant functor
from Π (Σ ) to G(E) and a gauge transformation between two groupoid morphisms as defined in (4.29) is a natural
transformation between the functors. In Section 6 we will comment more on this issue.

There is another possibility to introduce the notion of gauge equivalence between the groupoid morphisms or
algebroid morphisms, e.g. see [3]. Namely, this can be done via groupoid (algebroid) homotopies. The groupoid
(algebroid) homotopy is an alternative way of integrating the gauge transformations (3.18) and (3.19). Let I = [0, 1];
it is clear that for groupoid Π (Σ ) over Σ , we can define on Π (Σ )× I × I a groupoid structure over Σ × I with the
corresponding algebroid given by T (Σ × I ).

Definition 4.1. Let X̂ i , i = 1, 2, be two groupoid morphisms from Π (Σ ) to G(E). We say that X̂1 and X̂2 are
homotopic if there exists a groupoid morphism X̂12 : Π (Σ ) × I × I → G(E) such that X̂12(−, 0, 0) = X̂1 and
X̂12(−, 1, 1) = X̂2.

1 This algebroid has been defined for one dimensional Σ in [6]. It has been done intrinsically in terms of the Lie algebroid E and thus it exists
also for nonintegrable algebroids.
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Definition 4.2. Let (X i , ji ), i = 1, 2, be two algebroid morphisms from TΣ to E . We say that (X1, j1) and (X2, j2)
are homotopic if there exists an algebroid morphism (X12, j12) : T (Σ×I ) → E such that (X12, j12)(−, 0) = (X1, j1)
and (X12, j12)(−, 1) = (X2, j2).

Next we show that the groupoid homotopies are the gauge transformations connected to the identities, i.e. those
transformations that live in the component (GΣ

X )o of the source fibre GΣ
X over X : Σ → M connected to the

identity X . Borrowing the terminology from gauge theory we say that groupoid homotopies are the small gauge
transformations of GΣ .

Lemma 4.3. Two groupoid morphisms X̂ i : Π (Σ ) → G(E), i = 1, 2, are homotopic if and only if there exists a
gauge transformation Φ̂ ∈ (GΣ

X1
)o such that X̂2 = (X̂1)Φ̂ .

Proof. Let X̂ i be homotopic with homotopy X̂12. We have that

X̂2[cuv] = X̂12([cuv], 1, 1) = X̂12([c
tr
uu], 1, 0)X̂12([cuv], 0, 0)X̂12([c

tr
vv], 0, 1)

= Φ̂(u)X̂1([cuv])Φ̂(v)−1,

where [ctr
uu] is the class of the trivial loop through u, Φ̂ ∈ GΣ is defined by Φ̂(u) = X̂12([ctr

uu], 1, 0) and
γ̂ (s)(u) = X̂12([ctr

uu], s, 0) ∈ G(E)X1(u) is such that γ̂ (0) = X1 and γ̂ (1) = Φ̂.
Conversely, let Φ̂ ∈ (GΣ

X1
)o, with γ̂ : I → GΣ

X1
such that γ̂ (0) = X1 and γ̂ (1) = Φ̂, and X̂2 = (X̂1)Φ . The

required homotopy is then defined as X̂12([cuv], s1, s2) = γ̂ (s1)(u)X̂1[cuv]γ̂ (s2)(v)
−1. �

Below for completeness we describe the action of GΣ on algebroid morphisms.

4.2. Groupoid action on the algebroid morphisms

In this subsection we compute the groupoid action of GΣ on the algebroid morphism (X, j) : TΣ → E . Let
Φ̂ ∈ GΣ be such that s(Φ̂) = X and let X̂ : Π (Σ ) → G(E) be the groupoid morphism integrating (X, j), e.g.
j = X̂∗. We define the action of Φ̂ on j as jΦ̂ = X̂Φ̂∗

.

Let G(E)(2)x = {(γ1, γ2) ∈ G(E) × G(E)x | s(γ1) = t (γ2)} and let m : G(E)(2)x → G(E)x be the
multiplication m(γ1, γ2) = γ1γ2. For each v ∈ Σ we have that X̂Φ̂ : Π (Σ )v → G(E)t (Φ̂(v)) can be expressed

as X̂Φ̂ = RΦ̂(v)−1 ◦ m ◦ (Φ̂ ◦ t, X̂), where (Φ̂ ◦ t, X̂) : Π (Σ )v → G(E)(2)X (v), and RΦ̂(v)−1 : G(E)X (v) → G(E)t (Φ̂(v))
denotes the right multiplication by Φ̂(v)−1. The tangent map jΦ̂ : TvΣ → Et (Φ̂(v)) is expressed on w ∈ TvΣ as

jΦ̂(w) = RΦ̂(v)−1∗ ◦ m∗(Φ̂∗(w)⊕ j (w)). (4.30)

Remark that in (4.30) we consider Φ̂∗(w) ⊕ j (w) ∈ T
(Φ̂(v),X (v))G(E)

(2)
X (v) = Ker(s∗ − t∗) ⊂ TΦ̂(v)G(E) ⊕

TX (v)G(E)X (v), where s∗ − t∗ : Tγ1G(E)⊕ Tγ2G(E)x → Ts(γ1)M is defined on every (γ1, γ2) ∈ G(E)(2)s(γ1)
. It is then

clear that (4.30) makes sense only if s∗ ◦ Φ̂∗(w) = t∗ ◦ j (w), e.g. X∗ = ρ ◦ j which is (3.17). So the action of
GΣ automatically extends only to those vector bundle morphisms that commute with the anchor maps. The correct
definition of the off shell gauge transformations is delicate and is beyond the scope of the present work, e.g. see [3]
for a discussion of this problem.

Indeed the above construction is a direct generalization of the following example.

Example 4.4. Consider the Examples 2.2 and 2.11. Let E be the Lie algebra g; then G(E) = G(E)(2) = G and
m∗ = Rg2∗ + Lg1∗ : Tg1 ⊕ Tg2 → Tg1g2 . If we plug it in (4.30) we get the action of g ∈ GΣ on j : TvΣ → g as

jg(w) = (Rg(v)−1 ∗ ◦g∗ + Adg(v)∗) ◦ j (w). (4.31)

In this example a Lie algebroid morphism is a flat connection on the trivial bundle and (4.31) is the gauge
transformation of a connection. The associated groupoid morphism is defined by the parallel transport which
transforms with the adjoint, accordingly to (4.29).
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4.3. The open case

Let Σ be a surface with n boundary components, ∂Σ =
⋃n

i=1 ∂iΣ . According to the discussion in Section 3, we
consider a set E = {Ei } of n subalgebroids Ei ⊂ E overDi . Due to the integrability of E , there are n source-connected
immersed Lie subgroupoids G(Ei ) ⊂ G(E) that integrate the Lie subalgebroids Ei .

We consider the space Mor(Π (Σ ),G(E);G(E)) of groupoid morphisms X̂ : Π (Σ ) → G(E) such that
X̂

(
Π (Σ )|∂iΣ

)
⊂ G(Ei ), where Π (Σ )|∂iΣ = {[cuv] ∈ Π (Σ ) | cuv ⊂ ∂iΣ } is the subgroupoid of Π (Σ ) integrating

the i-th boundary component ∂iΣ .
In analogy with the closed case, we define the groupoid GΣ ,E overMΣ ,E , where

GΣ ,E
= {Φ̂ : Σ → G(E) | Φ̂(∂iΣ ) ⊂ G(Ei )},MΣ ,E

= {Φ : Σ → M | Φ(∂iΣ ) ⊂ Di }.

Formula (4.29) gives a groupoid action of GΣ ,E on Mor(Π (Σ ),G(M);G(E)).
From Sections 4.1 and 4.2 we can generalize all results for the case ∂Σ 6= ∅. The generalizations are rather

straightforward. Thus we can introduce groupoid homotopies respecting the boundary conditions.

Definition 4.5. The groupoid morphisms X̂ i ∈ Mor(Π (Σ ),G(E);G(E)), i = 1, 2, are homotopic if there exists
a groupoid morphism X̂12 : Π (Σ ) × I × I → G(E) such that X̂12(−, 0, 0) = X̂1, X̂12(−, 1, 1) = X̂12 and
X̂12 : Π (Σ )|∂iΣ × I × I → G(Ei ).

In analogy to the closed case, groupoid homotopies are the gauge transformations connected to the identities. In
fact, let (GΣ ,E

X )o be the component connected to X : Σ → M of the source fiber over X . By repeating the same proof
as in Lemma 4.3 and taking care of boundary conditions we can prove the following result.

Lemma 4.6. Two groupoid morphisms X̂ i ∈ Mor(Π (Σ ),G(E);G(E)), i = 1, 2, are homotopic if and only if there
exists a gauge transformation Φ̂ ∈ (GΣ ,E

X1
)o such that X̂2 = (X̂1)Φ̂ .

5. Moduli space of solutions

In this section we discuss the moduli space of solutions modulo gauge transformations. As explained in the previous
section, among several choices for the finite gauge transformations, we will choose the largest set, the groupoid GΣ .
The main motivation for this choice comes from the PSM on the disk. In [4] it has been shown that this is the correct
gauge group for the observables that are relevant for deformation quantization. Moreover the discussion of the moduli
space is particularly simple and is the straightforward generalization of that obtained in [5] for Poisson–Lie groups.

As we will see, the whole construction is a quite direct generalization of the moduli space of flat G-connections.
Let us analyze this case first. The algebroid morphisms from TΣ to g correspond to the flat connections in the trivial
G-bundle over Σ , where G is the simply connected Lie group integrating g. The meaning of the second Lie theorem
is that we can equivalently describe any flat connection for the trivial bundle by assigning the parallel transport. If
dim Σ ≤ 2 then there are no other topologically inequivalent G-bundles and therefore the moduli space of algebroid
morphisms coincides with the moduli space of flat connections; in generic dimension it will be the component
corresponding to the trivial bundle. We are going to show that this description remains valid if we consider a generic
integrable algebroid E and take the (ssc) groupoid G(E) integrating it.

5.1. The closed case

Let Σ be a closed surface. We denote by M(Σ ,G(E)) the space of groupoid morphisms divided by the action
(4.29) of GΣ , i.e.

M(Σ ,G(E)) = Mor(Π (Σ ),G(E))/GΣ . (5.32)

It is clear that, for any (X, X̂) ∈ Mor(Π (Σ ),G(E)), X (Σ ) is contained in a single leaf L . Since gauge
transformations do not change the leaf, we can decompose the total moduli space (5.32) in the union of the moduli
spaceM(Σ ,G(E); L) of solutions corresponding to the leaf L .

The following moduli space will be of central interest to us. Let us fix a leaf L ⊂ M and consider for any
point x0 ∈ L the isotropy group Gx0

x0 = G(E)x0
x0 together with the moduli space of flat connections F(Σ ,Gx0

x0 ) =

Hom(π1(Σ ),Gx0
x0 )/Ad, where Ad denotes the adjoint action of Gx0

x0 . By varying x0 ∈ L , the isotropy group changes
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by conjugation so that the moduli spaces are isomorphic; we denote it F(Σ ,G(E); L). We define the moduli space of
generalized flat G-connections on Σ as the union over all symplectic leaves, e.g. F(Σ ,G(E)) =

⋃
L F(Σ ,G(E); L).

It is important to notice that the moduli space can be introduced without referring to any choice of x0 ∈ L . In fact one
can verify that

F(Σ ,G(E)) =

⋃
y∈M

Hom(π1(Σ ),G y
y )/Ad, (5.33)

where Ad means the adjoint action of G(E), φ → γφγ−1, for φ ∈ Hom(π1(Σ ),G y
y ) and γ ∈ Gy . Equivalently

F(Σ ,G(E)) = Mor(π1(Σ ),G(E))/Ad is the moduli space of groupoid morphisms from π1(Σ ) to G(E), where
π1(Σ ) is regarded as a groupoid over a point.

Remark 5.1. There is a very natural topology on F(Σ ,G(E)). Let Σ be the compact surface of genus g, then
π1(Σ ) is generated by {ai , bi }

g
i=1 with relation Πi [ai , bi ] = 1, where [a, b] = aba−1b−1. Let us define G2

2 =⋃
x∈M×

2g G(E)xx ⊂ ×
2g G(E) together with the map p : G2

2 → G(E),

p(z1, w1, . . . , zg, wg) = [z1, w1] . . . [zg, wg].

It is clear that p−1(M) ⊂ ×
2g G(E) inherits the relative topology and that F(Σ ,G(E)) = p−1(M)/Ad the quotient

topology. �

In Proposition 5.2 we show that the two moduli spaces (5.32) and (5.33) coincide. Before proving it, we will
introduce the following auxiliary constructions. Let us fix u0 ∈ Σ ; we identify Π (Σ )u0

u0 as π1(Σ ) and Π (Σ )u0 as Σ̃ ,
the universal cover of Σ . Let us introduce the following trivialization for the π1(Σ ) principal bundle Σ̃ → Σ . Let
{Uα}α be a covering of Σ with Uα and Uα ∩ Uβ contractible. Let us fix for each u ∈ Uα a curve cαu0u starting in u and
ending in u0 in such a way that, once Uα is contracted, all such curves are homotopic. Then let us define on Uα ∩ Uβ ,

hαβ = cαu0u ◦ cβuu0 ; it is clear that [hαβ ] ∈ π1(Σ ) is constant for all u ∈ Uα ∩ Uβ ; we have defined a flat structure on

Σ̃ .

Proposition 5.2. For every closed manifold Σ such that dim Σ = 1, 2 and for every source simply connected Lie
groupoid G(E) we haveM(Σ ,G(E)) = F(Σ ,G(E)).

Proof. For any (X, X̂) ∈ Mor(Π (Σ ),G(E)) we have that X̂ : π1(Σ ) → GX (u0)
X (u0)

is a group homomorphism. If we

change (X, X̂) by a gauge transformation Ψ̂ ∈ GΣ we get that X̂Ψ̂ |π1(Σ ) = AdΨ̂ (u0)
(X̂ |π1(Σ )), so that we associate

an element in F(Σ ,G(E)) to the class inM(Σ ,G(E)) represented by (X, X̂).
Let us show that this correspondence is injective. Let (X i , X̂ i ) be two solutions corresponding to the same

flat connection, e.g. Adγ21(X̂1|π1(Σ )) = X̂2|π1(Σ ), for some γ21 ∈ G(E)X2(u0)
X1(u0)

. If we introduce the local lifting

ψiα : Uα → GX i (u0), ψiα(u) = X̂ i [cαuu0
], it is easy to verify that Φ̂α(u) = ψ2α(u)γ21ψ

−1
1α (u) for u ∈ Uα extends to a

globally defined map Φ̂ ∈ GΣ such that s(Φ̂) = X1, t (Φ̂) = X2 and X̂2 = (X̂1)Φ̂ .
Let us go in the opposite direction and show that the correspondence is surjective. In order to do this we first recall

that a G-bundle E → B is n-universal if πi (E) = 0 for i < n. The following facts are relevant for us: every G-bundle
over an n-dimensional manifold N is the pull-back of E for some X : N → B; moreover if E is n + 1-universal, then
the G-bundles over N are classified by homotopies from N to B [23].

Now let ρ : π1(Σ ) → Gx0
x0 be a flat connection for some x0 ∈ L; since G(E)x0 is simply connected, then Gx0 → Lx0

is a universal 2-bundle for Gx0
x0 . This means that the principal Gx0

x0 -bundle Σ̃ ×ρ Gx0
x0 is equivalent to the pull-back

X∗
ρ(Gx0) for some Xρ : Σ → Lx0 . Let Ψρ : Σ̃ ×ρ Gx0

x0 → Gx0 be the bundle map. Finally, define X̂ρ : π(Σ ) → G(E)
as

X̂ρ[cuv] = Ψρ([c
α
uu0

], e)ρ[cαu0ucuvcβvu0
]Ψρ([c

β
vu0

], e)−1u ∈ Uα, v ∈ Uβ .

It is easy to see that (Xρ, X̂ρ) is a well defined groupoid morphism. �

We remark the crucial role played in the proof by the fact that Gx0 is simply connected which follows from the
assumption that G(E) is source simply connected. Indeed the same assumption was used for the Poisson–Lie group
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case, see [5]. If the groupoid G(E) is not source simply connected or dim Σ > 2 then the Proposition 5.2 is not true
anymore and we only have the embeddingM(Σ ,G(E)) ⊂ F(Σ ,G(E)).

Remark 5.3. We can rephrase the above construction by saying that to every groupoid morphism (X, X̂) we can
associate a flat Gx0

x0 -bundle over Σ . In order to be more explicit, we are going to show that the pull-back principal
bundle X∗(Gx0) admits a flat structure, i.e. according to [15] it is isomorphic to Σ̃ ×X̂ G

x0
x0 . In fact it is straightforward

to verify that ΦX : X∗(G(E)x0) → Σ̃ ×X̂ G
x0
x0 defined by

ΦX (u, γ ) = ([cαuu0
], X̂ [cαu0u]γ ), Φ−1

X ([cuu0 ], γ ) = (u, X̂ [cuu0 ]γ )

is a well defined principal bundle isomorphism.

The following examples will help to clarify the above constructions.

Example 5.4. Consider Example 4.4 and let G = G be a simply connected Lie group seen as a groupoid over a point ∗;
then G∗ = G∗

∗ = G. Then GΣ can be seen as a groupoid over a point, hence a group, and Bis(GΣ ) = GΣ . The moduli
space of solutions coincides with the moduli space of flat G-connections on Σ divided by gauge transformations.

Example 5.5. There are two extreme cases where the moduli spaces of solutions are easy to describe. The first one is
whenM is a simply connected symplectic manifold. In fact the (ssc) groupoid integrating it is G(M) = M×M and
Gx0

x0 = (x0, x0); the space of flat connection F(Σ ,Gx0
x0 ) = {∗} is then trivial. The other one is when Σ = S2 where we

have thatM(S2,G(E)) is the space of leaves of G(E).

Example 5.6. Let G = M × G be the action groupoid. Then a leaf is an orbit Lx0 = G/Gx0 , for x0 ∈ M . We have
that GΣ

= MΣ
×GΣ and thus it is enough to consider GΣ as a gauge group since the orbits of GΣ and GΣ coincide.

In fact, the actions of Ψ̂ = (ψ, γ ) ∈ GΣ and γ ∈ GΣ on X̂ coincide. This was the gauge group considered in [5].

5.2. The open case

Let Σ be a compact surface with boundary. Let us consider the case with one boundary component ∂Σ . Let
E ′

→ D be a subalgebroid of E and let G(E ′) be the (source connected) immersed subgroupoid of G(E) integrating
it. We define the relevant moduli space as the space of groupoid morphisms Mor(Π (Σ ),G(E);G(E ′)) respecting the
boundary conditions defined in Section 4.3 divided by the action (4.29) of GΣ ,E ′

, e.g.

M(Σ ,G(E);G(E ′)) = Mor(Π (Σ ),G(E);G(E ′))/GΣ ,E ′

. (5.34)

It is clear that each solution sends the boundary in a fixed leaf L ⊂ D of E ′ and we denote with
M(Σ ,G(E);G(E ′), L) the subset of (5.34) corresponding to this leaf.

In analogy to the closed case, we introduce the following moduli space of generalized flat connections with the
holonomy around the boundary which takes value in a subgroup. The relevant space is the union over the leaves
Lx ⊂ D of G(E ′) of the moduli spaces of flat G(E)xx -connections with holonomy around the boundary living in
G(E ′)

x
x . More precisely, let us choose u0 ∈ ∂Σ and identify π1(Σ ) = Π (Σ )u0

u0 and denote with [∂Σ ] ∈ π1(Σ ) the
boundary generator. We define

F(Σ ,G(E);G(E ′)) =

⋃
x∈D

{ρ ∈ Mor(π1(Σ ),G(E)xx ), ρ[∂Σ ] ∈ G(E ′x
x )}/Ad, (5.35)

where Ad is the adjoint action of G(E ′).
Let {Uα, cαuu0

} define a trivialization of Σ̃ = Π (Σ )u0 as described in Section 5.1 such that cαuu0
⊂ ∂Σ for all

u ∈ ∂Σ .

Proposition 5.7. For every surface Σ (dim Σ ≤ 2) with one boundary component and every Lie source simply
connected groupoid G(E) and immersed source connected Lie subgroupoid G(E ′) ⊂ G(E) we have that
F(Σ ,G(E);G(E ′)) = M(Σ ,G(E);G(E ′)).
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Proof. The proof consists in repeating the same steps of the proof of Proposition 5.2 and checking that the boundary
conditions are respected. The map from M(Σ ,G(E);G(E ′)) to F(Σ ,G(E);G(E ′)) is defined in the same way
and easily shown to be injective, thanks to the choice of trivialization of Σ̃ . More care is needed for the inverse
map. Let ρ : π1(Σ ) → G(E)xx with ρ[∂Σ ] ∈ G(E ′)

x
x , for x ∈ D. We can then define the G(E)xx -bundle

Σ̃ ×ρ G(E)xx over Σ and the G(E ′)
x
x -bundle ∂Σ̃ ×ρ G(E ′)

x
x over ∂Σ . Since G(E ′) is source connected, the G(E ′)

x
x

bundle t : G(E ′)x → L ′
x , where L ′

x ⊂ D is the leaf containing x , is 1-universal. Then there exists a G(E ′)
x
x bundle

map ψ ′
ρ : ∂Σ̃ ×ρ G(E ′)

x
x → G(E ′)x that can be extended to a G(E)xx bundle map ψρ : Σ̃ ×ρ G(E)xx |∂Σ → G(E)x .

Since G(E)x → Lx is 2-universal for G(E)xx , we have that ψρ can be extended to the whole bundle over Σ by
Ψρ : Σ ×ρ G(E)xx → G(E)x . The groupoid morphisms is defined then as in the proof of Proposition 5.2 and respects
the boundary conditions. �

Example 5.8. Let us consider Σ = D1. ThenM(Σ ,G(E);G(E ′)) is the space of leaves of G(E ′).

We close this section with a few remarks regarding the moduli space over the interval I = [0, 1]. This is
closely related to the explicit construction of the groupoid G(E) integrating the Lie algebroid done in [12] and [14].
We consider first the Lie groupoid morphisms with boundary conditions given by the trivial groupoid over M
(i.e., E0 = E1 = M × {0} and G(E0) = G(E1) = M). Remark that any groupoid morphism X̂ : I × I → G(E)
satisfies these boundary conditions since they simply mean that X̂(0, 0), X̂(1, 1) ∈ M. The gauge transformations
Φ̂ ∈ G I,M,M are given by maps Φ̂ : I → G(E) such that Φ̂(0), Φ̂(1) ∈ M. Then using a standard argument, it is
easy to see that the map X̂ → X̂ [1, 0] defines a bijection between the moduli space and the groupoid itself, i.e.

Mor(I × I,G(E);M,M)/G I,M,M
= G(E).

This description of the groupoid must be compared with that of [12,14], where the groupoid is obtained as the
space of algebroid morphisms divided by algebroid homotopies. By taking into account Lemma 4.6, it is reasonable
to think that G I,M,M is connected to the identities.

The case of generic boundary conditions can be analogously treated. Let E = {E0, E1} be two subalgebroids of E
and let G(Ei ), i = 0, 1, be the two subgroupoids of G(E) integrating them. It is easy to see that

Mor(I × I,G(E);G(E0),G(E1))/G I,E
= G(E1) \ t−1(G(E1)) ∩ s−1(G(E0))/G(E0).

6. Concluding remarks

In this work we have studied the space of Lie algebroid (groupoid) morphisms modulo gauge transformations. Since
our motivations come from two-dimensional topological field theory, the point of view has been gauge theoretic. In
this perspective, we argued that the choice of finite gauge transformations as the transformations (4.29) of the groupoid
GΣ is the most natural one. Indeed the whole story is just a relatively direct generalization of the group case and the
moduli spaces can be thought of as a generalization of the moduli spaces of flat connections.

Since groupoids are categories, it is extremely useful to reconsider the paper from a categorical point of view,
where these choices appear as extremely natural. In fact, let H and G be two groupoids, then a groupoid morphism
from H to G is a covariant functor. We can consider the functor category C(H,G), whose objects are the groupoid
morphisms Mor(H,G) and whose morphisms are the natural transformations between functors; C(H,G) is again a
groupoid. It is easy to verify that the gauge transformations defined in (4.29) coincide with the natural transformations.
So the moduli space defined in (5.32) corresponds to the set π0(C) of the connected components of C when
H = Π (Σ ) and G = G(E). The content of Proposition 5.2 can be expressed by saying that when dim Σ ≤ 2
then π0(C(π1(Σ ),G(E))) = π0(C(Π (Σ ),G(E))).

Moreover, it is important to point out that in the closed case the moduli spaces are Morita invariants of the groupoid
G(E) (see [7] for definitions). This fact follows from the observation that if G1 and G2 are Morita equivalent then also
C(π1(Σ ),Gi ) are Morita equivalent groupoids: in particular they have the same space of connected components.

On a more geometrical side, it will be extremely interesting to see which geometrical structures can be defined
over these moduli spaces. Indeed some basic facts can be observed now. In Remark 5.1 we pointed out that the moduli
spaces are topological spaces. Moreover, they are the union of moduli spaces of flat connections and thus they are a
collection of symplectic manifolds (with singularity).



744 F. Bonechi, M. Zabzine / Journal of Geometry and Physics 57 (2007) 731–744

We hope to come back to all these problems in the future and consider what the quantization of the TFT can bring
to the understanding of these spaces. The TFT which one can associate to any Lie algebroid is a BF-like theory. In
the group case the quantization of BF-theory gives rise to many interesting calculations, e.g. the Ray–Singer torsion.
It will be interesting to see if those calculations can be extended to the general case of Lie groupoids.
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